Prolyl hydroxylase domain protein 2 plays a critical role in diet-induced obesity and glucose intolerance.
نویسندگان
چکیده
BACKGROUND Recent studies suggest that the oxygen-sensing pathway consisting of transcription factor hypoxia-inducible factor and prolyl hydroxylase domain proteins (PHDs) plays a critical role in glucose metabolism. However, the role of adipocyte PHD in the development of obesity has not been clarified. We examined whether deletion of PHD2, the main oxygen sensor, in adipocytes affects diet-induced obesity and associated metabolic abnormalities. METHODS AND RESULTS To delete PHD2 in adipocyte, PHD2-floxed mice were crossed with aP2-Cre transgenic mice (Phd2(f/f)/aP2-Cre). Phd2(f/f)/aP2-Cre mice were resistant to high-fat diet-induced obesity (36.7±1.7 versus 44.3±2.0 g in control; P<0.01) and showed better glucose tolerance and homeostasis model assessment-insulin resistance index than control mice (3.6±1.0 versus 11.1±2.1; P<0.01). The weight of white adipose tissue was lighter (epididymal fat, 758±35 versus 1208±507 mg in control; P<0.01) with a reduction in adipocyte size. Macrophage infiltration into white adipose tissue was also alleviated in Phd2(f/f)/aP2-Cre mice. Target genes of hypoxia-inducible factor, including glycolytic enzymes and adiponectin, were upregulated in adipocytes of Phd2(f/f)/aP2-Cre mice. Lipid content was decreased and uncoupling protein-1 expression was increased in brown adipose tissue of Phd2(f/f)/aP2-Cre mice. Knockdown of PHD2 in 3T3L1 adipocytes induced a decrease in the glucose level and an increase in the lactate level in the supernatant with upregulation of glycolytic enzymes and reduced lipid accumulation. CONCLUSIONS PHD2 in adipose tissue plays a critical role in the development of diet-induced obesity and glucose intolerance. PHD2 might be a novel target molecule for the treatment of obesity and associated metabolic abnormalities.
منابع مشابه
Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice
Obesity is associated with local tissue hypoxia and elevated hypoxia-inducible factor 1 alpha (HIF-1α) in metabolic tissues. Prolyl hydroxylases (PHDs) play an important role in regulating HIF-α isoform stability. In the present study, we investigated the consequence of whole-body PHD1 gene (Egln2) inactivation on metabolic homeostasis in mice. At baseline, PHD1-/- mice exhibited higher white a...
متن کاملConditional Knockout of Prolyl Hydroxylase Domain Protein 2 Attenuates High Fat-Diet-Induced Cardiac Dysfunction in Mice
Oxygen sensor prolyl hydroxylases (PHDs) play important roles in the regulation of HIF-α and cell metabolisms. This study was designed to investigate the direct role of PHD2 in high fat-diet (HFD)-induced cardiac dysfunction. In HFD fed mice, PHD2 expression was increased without significant changes in PHD1 and PHD3 levels in the heart. This was accompanied by a significant upregulation of myel...
متن کاملHIF‐2: The Missing Link Between Obesity and Cardiomyopathy
Introduction to HIF Pathway T he evolutionarily conserved hypoxia-inducible factor (HIF) pathway is present ubiquitously in mammalian cells and plays a critical role in the regulation of energy metabolism, especially glucose utilization. HIF is a transcription factor consisting of an O2-sensitive HIF-a (HIF-1a or HIF-2a) and the O2-insensitive HIF-1b subunit. 2 Under most physiologically normox...
متن کاملProlyl 4-hydroxylase.
Posttranslational modifications can cause profound changes in protein function. Typically, these modifications are reversible, and thus provide a biochemical on-off switch. In contrast, proline residues are the substrates for an irreversible reaction that is the most common posttranslational modification in humans. This reaction, which is catalyzed by prolyl 4-hydroxylase (P4H), yields (2S,4R)-...
متن کاملLoss of Sodium/Hydrogen Exchanger NHA2 Exacerbates Obesity- and Aging-Induced Glucose Intolerance in Mice
We previously demonstrated that the sodium/hydrogen exchanger NHA2, also known as NHEDC2 or SLC9B2, is critical for insulin secretion by β-cells. To gain more insights into the role of NHA2 on systemic glucose homeostasis, we studied the impact of loss of NHA2 during the physiological aging process and in the setting of diet-induced obesity. While glucose tolerance was normal at 2 months of age...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 127 21 شماره
صفحات -
تاریخ انتشار 2013